direct product, abelian, monomial, 2-elementary
Aliases: C22×C10, SmallGroup(40,14)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22×C10 |
C1 — C22×C10 |
C1 — C22×C10 |
Generators and relations for C22×C10
G = < a,b,c | a2=b2=c10=1, ab=ba, ac=ca, bc=cb >
(1 27)(2 28)(3 29)(4 30)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)
(1 17)(2 18)(3 19)(4 20)(5 11)(6 12)(7 13)(8 14)(9 15)(10 16)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
G:=sub<Sym(40)| (1,27)(2,28)(3,29)(4,30)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,17)(2,18)(3,19)(4,20)(5,11)(6,12)(7,13)(8,14)(9,15)(10,16)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)>;
G:=Group( (1,27)(2,28)(3,29)(4,30)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,17)(2,18)(3,19)(4,20)(5,11)(6,12)(7,13)(8,14)(9,15)(10,16)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40) );
G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40)], [(1,17),(2,18),(3,19),(4,20),(5,11),(6,12),(7,13),(8,14),(9,15),(10,16),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)]])
C22×C10 is a maximal subgroup of
C23.D5
40 conjugacy classes
class | 1 | 2A | ··· | 2G | 5A | 5B | 5C | 5D | 10A | ··· | 10AB |
order | 1 | 2 | ··· | 2 | 5 | 5 | 5 | 5 | 10 | ··· | 10 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C5 | C10 |
kernel | C22×C10 | C2×C10 | C23 | C22 |
# reps | 1 | 7 | 4 | 28 |
Matrix representation of C22×C10 ►in GL3(𝔽11) generated by
10 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
10 | 0 | 0 |
0 | 10 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 2 |
G:=sub<GL(3,GF(11))| [10,0,0,0,1,0,0,0,1],[10,0,0,0,10,0,0,0,1],[1,0,0,0,1,0,0,0,2] >;
C22×C10 in GAP, Magma, Sage, TeX
C_2^2\times C_{10}
% in TeX
G:=Group("C2^2xC10");
// GroupNames label
G:=SmallGroup(40,14);
// by ID
G=gap.SmallGroup(40,14);
# by ID
G:=PCGroup([4,-2,-2,-2,-5]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^10=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations
Export